
VoluMe 4, nuMber 1  35

 Statistics and Reality—
Addressing the Inherent Flaws of

Statistical Methods Used in
Measurement	and	Verification

John Avina, CEM, CEA, CMVP, CxA

ABSTRACT

 When we use regressions for Option C M&V, we use statistical indi-
cators, such as R2 and CV(RMSE) to determine whether the regression 
is valid and whether the regression should be used to determine energy 
and demand savings. Although introduced decades ago, fractional sav-
ings	uncertainty	 (FSU),	a	more	complex	 statistical	 indicator,	 is	finally	
becoming known among M&V practitioners. All of  these statistical 
indicators	used	to	qualify	Option	C	regressions	are	human	creations	and	
are not based in reality. This article explains how these indicators are 
inconsistent,	unscientific,	arbitrary,	and	often	not	well-suited	for	Option	
C M&V. The industry needs rules that are simple and that will work for 
all regressions. In this article, I have presented a set of  rules that I believe 
are understandable to practitioners and will avoid the drawbacks of  the 
current statistical indicator thresholds as recommended by ASHRAE 
and EVO.

STATISTICS	AND	REALITY

	 Coming	from	an	energy	engineering	point	of 	view,	I	find	statistics	to	
be	difficult.	The	math	is	not	too	difficult	and	in	a	rudimentary	sense,	the	
concepts	are	not	difficult	to	understand.	But	the	more	advanced	concepts	
are confounding to an engineer whose way of  thinking is based on what 
is observable in the material world.
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	 Both	statistics	and	engineering	use	the	language	of 	math	to	describe	
reality.	But	the	big	difference	between	statistics	and	engineering	is	 that	
engineers use mathematics to describe physical phenomena that can be 
observed and measured. We can compare our calculated results to these 
real phenomena, whereas statisticians use mathematics to describe con-
cepts. For many of  these concepts, there is no reality out there with which 
to compare our statistical calculations. In engineering, we do believe we 
are	correct	 in	our	mathematic	equations	and	calculations	when	 they	
match physical reality. In statistics, there is often no such physical reality 
to compare to, only a conceptual reality.
	 Oh,	we	can	weigh	100	apples	and	find	an	average	weight,	a	high	
weight, a low weight, even a standard deviation. These statistical con-
cepts	are	based	in	reality.	But	as	we	go	further	and	further	afield,	statistics	
gets more and more conceptual and further and further from the real 
world.

Definitions of  Terms Used
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	 Find	me	a	Newtonian	physics	equation	and	through	experimenta-
tion	engineers	can	tell	you	whether	 the	equation	accurately	represents	
whatever	entity	it	is	supposed	to	represent.	But	in	statistics,	we	are	stuck	
with these conceptual constructs that exist only in our minds. For exam-
ple, CV(RMSE) and R2 are two statistical indicators that can be used 
to gauge the goodness of  a linear regression to a set of  points. Figure 1 
presents	such	a	fit,	and	the	CV(RMSE)	and	R2 are calculated.

R2 VALUE	AND	CV(RMSE)

 The R2 value—also	known	as	 the	coefficient	of 	determination—
indicates the proportion of  the variance in the dependent variable that 
is a function of  the independent variable. A good regression model will 
have a high R2 value.	The	CV(RMSE)	is	defined	as	a	measure	of 	all	oth-
er variation in the dependent variable. Often, the CV(RMSE) is called 
a measure of  randomness or scatter. A good regression model will have 
little	scatter,	and	thus	a	small	CV(RMSE).	You	may	think	then,	because	
the R2 is expressed on a 0 to 1 scale, that the CV(RMSE) would also 
be on a 0 to 1 scale, and that the two values would add to 1. That is, 
if  the R2 is 0.81, then 81% of  the variation of  the dependent variable 
can be ascribed to variations in the independent variable. It should fol-
low, that all other variation, or scatter, should be 19%, or 0.19, but the 
CV(RMSE) value is not 19% or 0.19, and could be any number between 
0	to	infinity.	The	CV(RMSE)	isn’t	even	measured	on	the	same	scale	as	
R2! Why is that?
 So why don’t the two measures add up to one when their lay verbal 
definitions	imply	they	should?	If 	we	define	CV(RMSE)	as	an	indicator	of 	
all the variation in the dependent variable that is not related to the inde-
pendent variable, then it seems that the two measures should be related 
mathematically to each other.
 Most likely, the answer is that in trying to simplify these statistical 
concepts, statisticians have generalized them so that they can be vaguely 
understandable to the layperson (like myself). However, the generaliza-
tion has leached out the accuracy of  the explanations. If  the generaliza-
tions were accurate, then the R2 value and the CV(RMSE) would togeth-
er sum to unity. And not only that, as the R2 value drops, the CV(RMSE) 
should	increase.	But	that	doesn’t	always	happen,	as	you	will	see	below.
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 Let’s take a closer look at the R2 value. Linear regressions that 
have	steep	fits	have	higher	R2 values	than	linear	regressions	with	flatter	
slopes—even	if 	the	scatter	is	exactly	the	same.	Figure	2	shows	linear	fit	
regressions for two sets of  12-month bill data: each data set has the same 
mean	value,	and	the	same	CV(RMSE).	The	only	difference	between	the	
data	sets	is	that	the	orange	data	set	has	a	steeper	linear	fit	slope,	and	con-
sequently	has	a	higher	R2 value.

Figure 2. Linear Fit Regressions for Two Sets of  Billing Data

	 The	difference	in	R2 values in the example is the natural result of  
the	definition	of 	R2, which, as I said before, represents the proportion 
of  the variance in the dependent variable that is a function of  the inde-
pendent	variable.	If 	the	slope	is	flat,	then	the	dependent	variable	is	not	
varying by that much due to changes in the independent variable. And 
if  there is the same random scatter in both data sets, then the propor-
tion	of 	the	variance	due	to	the	independent	variable	in	the	flat	slope	is	
less,	and	the	proportion	due	to	the	randomness	is	more.	This	definition	
of  R2 works.
 So then, perhaps we shouldn’t call the R2 value an indicator of  the 
“goodness	of 	fit,”	because	“goodness	of 	fit”	has	nothing	 to	do	with	
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slope.	 In	addition,	because	both	 linear	fits	 in	Figure	2	have	 the	same	
random	scatter,	they	should	be	considered	equally	valid	models	to	pre-
dict energy usage. So, the R2 value really has little to do with how well 
the model predicts the actual values either.
 In addition, we should not be using the R2 value to determine 
whether	a	fit	is	acceptable	or	not.	It	is	not	a	fair	measure,	as	areas	with	
little variation in weather have a small likelihood of  passing the R2 
criteria. Honolulu and San Francisco are two places that come to mind 
where a low R2 value may not indicate a poor model. The point is that 
the R2 value is an imperfect construct created by a pair of  academics 
in the 1920s that is not based on a law of  nature or mathematics. For 
decades,	energy	efficiency	professionals	have	been	taught	the	R2 value 
as	an	 indicator	of 	“goodness	of 	fit”	as	 if 	 it	were	a	 law	of 	nature	not	
to	be	questioned.	 It	 is	not.*	Agami	Reddy	and	David	Claridge	made	
this	clear	in	2000[2],	and	the	ASHRAE	Guideline	14	committee	took	
this information to heart when they did not include the R2 value in the 
ASHRAE	Guideline	14	in	2002	and	again	in	2014[3].
 On the other hand, we shouldn’t be using the CV(RMSE) to deter-
mine	whether	a	fit	 is	acceptable	or	not	either.	Whereas	 the	R2 value 
is	comparing	points	 to	 the	 slope	of 	 the	fit,	 the	CV(RMSE)	compares	
points to the average bill. In Figure 3, we have two sets of  points; the 
only	difference	is	that	the	intercept	(3085.5)	associated	with	the	data	set	
of  orange dots is 500% higher than the intercept (617.09) of  the data 
set	signified	by	the	blue	squares.
	 The	CV(RMSE)	 for	 the	 lower	 line	 (signified	by	 squares)	 is	21%,	
while	 it	 is	5%	for	 the	higher	 line.	You	can	see	 that	 the	distance	 from	
the	points	to	the	fit	line	is	the	same.	The	R2 is the same for both. The 
CV(RMSE) increases when the average bill drops.
 So then, R2 value	is	low	for	fits	with	low	slopes,	and	the	CV(RMSE)	
is high when the average bill is lower. Neither indicator determines the 
quality	of 	the	fit	for	all	conditions.	Really,	neither	indicator	should	be	
used	to	determine	whether	a	fit	is	acceptable.

*I	admit,	I	was	one	of 	those	teachers,	who,	in	trying	to	simplify	the	concept	of 	R2 called it “goodness
of 	fit.”
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A	CLOSER	LOOK	AT	THE	DIFFERENCE	BETWEEN
THE R2 AND	CV(RMSE)	EQUATIONS

 Let’s take a closer look at the data in Figure 2. The data are from 12 
months of  consecutive utility bills. Each data point represents a month’s 
therms/day	as	a	function	of 	the	heating	degree	days	(HDD)/day.*
	 This	difference	in	R2 values in the two plots in the graph is due to 
the denominator of  the R2 term	(see	Equation	1),	which	represents	how	
far the individual points are from the average point. If  the points are 
clumped	together	 to	 form	a	flat	slope,	 then	the	points	are	close	 to	 the	
average point, and the denominator would be lower, the fraction is there-
fore	higher,	and	finally,	the	R2 value is lower.

(Eq	1)

Figure 3. Comparison of  Two Trend Lines with the Same R2

*If 	we	merely	plotted	therms	vs.	HDD,	a	25-day	bill	would	carry	just	as	much	weight	as	a	35-day
bill. We divide by number of  days to remove this bias.
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where:
yi represents the actual bill
ŷi	represents	what	the	fit	line	estimates	the	bill	to	be
yi represents the average bill in the base year
and can translated into lay terms as:

 	 (Eq	2)

Or written another way even simpler:

 R2 =	1	–	Scatter	%	 (Eq	3)

 What is interesting (to the non-statistician like myself) is that the R2 
value	is	defined	in	the	equation	as	everything	except	the	scatter.
 Let’s take a look at the “Scatter %” term.
	 The	numerator	in	Equation	2,	∑(difference	from	each	bill	to	fit	line)2, 
is the “scatter” in absolute terms (in other words, it is not a percentage, 
but the number of  kWh2, therms2,	or	the	square	of 	whatever	unit	we	are	
dealing with). If  the model were perfect, each month’s bill would lie on 
the	fit	line,	the	numerator	would	be	0	(i.e.,	the	“scatter”	term	would	be	
0), and the R2 value would be 1.
 The denominator makes the scatter in the numerator into a per-
centage of  the total scatter, so that the R2 value, which is 1 minus this 
percentage,	will	always	be	between	0	and	1.	But	why	do	they	use	the	dif-
ference between each monthly bill and the yearly average in the denomi-
nator?	Couldn’t	they	have	used	the	difference	between	each	monthly	bill	
and the model’s prediction of  that monthly bill? I know there is a reason 
behind	the	definition.	I	am	just	not	aware	of 	it.
	 Remember,	CV(RMSE)	is	also	defined	as	scatter.	The	definition	of 	
CV(RMSE) is:

 	 (Eq	4)

where
 n is number of  bills
 p is number of  independent variables + 1
 yi represents the actual bill
	 ŷi	represents	what	the	fit	line	estimates	the	month’s	bill	to	be
 yi represents the average bill in the base year
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Equation	4	can	be	rearranged:

 	 (Eq	5)

and translated into lay terms as:

 
	(Eq	6)

	 In	 the	 format	of 	equations	5	and	6,	 the	CV(RMSE)	 looks	 similar	
to the R2 value	equation.	Let’s	compare	the	two	equations:	Equation	6	
above,	and	equation	2	repeated	below:

 	 (Eq	2)

 The numerators for R2 and CV(RMSE) are nearly the same. In 
fact,	they	only	differ	by	the	square	root	of 	the	summation	term.	It	is	the	
denominators	that	are	different.	The	CV(RMSE)	uses	the	average	bill	in	
the denominator, whereas the denominator of  the R2 value is based on 
the	difference	from	each	bill	to	the	average	bill.	(You	have	to	divide	by	
something to get a percentage, and the designers of  these two indicators 
unfortunately	used	different	denominators.)
 Essentially, we are using scatter in two ways. The R2 value is the 
anti-scatter, R2 =	1-	Scatter,	while	the	CV(RMSE)	=	Scatter.
	 And	to	confound	it	all,	the	problem	is	that	the	definitions	of 	scatter	
are	different.	These	different	definitions	of 	scatter	explain	why	the	R2 val-
ue, and the CV(RMSE) do not add up to one. So why is the CV(RMSE) 
using the average bill, and the R2 using	the	difference	from	each	bill	to	
the	average	bill?	Is	there	a	good	reason	for	this	difference?	I	doubt	it.	My	
guess	is	that	the	CV(RMSE)	had	a	different	independent	evolution	from	
the R2 value.	The	CV(RMSE)	evolved	from	the	coefficient	of 	variation,	
the CV, an old concept. As the CV was then extended from applying to 
a single number to a regression over a series of  numbers, it became the 
CV(RMSE).
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AN	EXAMPLE	GREAT	FIT	WITH	A	LOW	R2 VALUE

	 The	meter	data	in	Figure	4	are	from	a	department	store	in	Daly	City,	
California.	For	those	who	have	not	visited	Daly	City,	I	can	tell	you	it	is	
nearly always foggy there, and the weather is uniformly dreary, every 
month	of 	 the	year.	The	model	 for	kWh	vs.	CDD	shows	a	very	flat	fit,	
with	a	consequent	low	R2 value	of 	0.06.	But	the	CV(RMSE)	is	fantastic,	
at 3%. In spite of  the poor R2 value,	this	is	a	fantastic	fit.	So,	what	should	
we do? Is this an acceptable regression?
 Old school ESCO thinking would be to throw the model out—don’t 
use	it.	The	IPMVP	states	that	fits	should	have	R2 values above 0.75, and 
this model is clearly lower. Most ESCOs follow the IPMVP. ASHRAE 
Guideline	14	does	not	mention	R2 value	and	 instead	requires	 that	fits	
have low CV(RMSE)s. According to the IPMVP recommendation of  
0.75,	then,	this	is	an	unacceptable	fit.	According	to	ASHRAE	Guideline	
14, it is stellar. So, what should we do with this model? The regression 
model appears very accurate at predicting the bills. Why not use it?

PERHAPS A SOLUTION TO THE CV(RMSE)
AND	R2 INCONSISTENCY

 Perhaps a solution to this jumble of  the inconsistency of  R2 and 
CV(RMSE) would be to at least make them consistent. Why not have the 
CV(RMSE), or my proposed replacement of  it, be associated with the R2 
value. The R2 value compares deviation to the slope. Why not have the 
replacement for the CV(RMSE) also compare deviation to the slope. An 
easy	equation	would	be:

	 Proposed	Measure	of 	Scatter	=	1	–	R2 (Eq	7)

 This way, if  an R2 value was 0.8, we are saying that 80% of  the 
deviation of  the dependent variable is associated with the independent 
variable.	And	therefore,	the	Scatter	=	1	–	0.8	=	0.2,	which	means	that	
20%	of 	the	fluctuation	of 	the	independent	variable	we	cannot	account	
for.	Doesn’t	that	seem	more	elegant?
	 The	problem	with	this	simplification,	as	I	mentioned	already,	is	that	
R2 values	are	low	for	flatter	slopes	and	high	for	steeper	slopes.	Although	
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this	 follows	the	definition	of 	R2, as “to what degree do changes in the 
independent variable correspond to changes in the dependent variable,” 
my	definition	of 	scatter	still	holds.	For	flat	slopes,	we	cannot	account	for	
most	of 	the	variation;	therefore,	for	the	Daly	City	meter	above,	the	0.06	
R2 value, would yield a scatter of  94%. Just like we cannot use R2, or 
CV(RMSE)	to	determine	whether	a	fit	is	acceptable	to	use	in	a	model,	
we would not be able to use my proposed scatter term either. It is a good 
fit,	and	my	scatter	is	94%,	which	appears,	on	the	surface,	way	too	high.
	 But	at	least	R2 and Scatter terms would be consistent. We would be 
able to say: “6% of  the variation in kWh/day is associated with changes 
in	CDD/day	and	94%	of 	the	variation	in	kWh/day,	well,	we	don’t	know	
where	that	comes	from.”	Isn’t	that	more	elegant	than	saying,	the	fit	has	
an R2 value of  0.06 and a CV(RMSE) of  3.04%?

CV(RMSE)	AND	SAVINGS	FRACTION

 The IPMVP Core Concepts module states that the savings fraction 
should be more than two times the CV(RMSE). The savings fraction, F, 
is the percentage of  energy you expect to save from the total bill. In other 
words, if  you expect to save 40% of  energy usage, then the CV(RMSE) 
should	be	less	than	20%.	Two	questions	come	to	mind.	Why	two	times	
and not three times, or one and half  times? Where did that come from?
	 The	second	question	is,	why	does	this	matter	in	the	first	place?	If 	
you want to see savings over a month or a few months, sure, this makes 
sense.	You	want	 the	 savings	 to	be	 larger	 than	 the	CV(RMSE).	Then	
you	can	be	somewhat	certain	that	the	difference	in	usage	is	due	to	your	
retrofits	and	not	due	to	the	noise	the	CV(RMSE)	is	indicating.	But	over	
the	course	of 	a	year,	it	all	evens	out.	Because	the	model	has	a	net	mean	
bias error of  0, for an entire year of  data the model is not biased to 
show more or less savings than there really is. For example, suppose you 
have	a	model	with	a	good	fit.	The	CV(RMSE)	is	18%,	and	your	energy	
projects	are	supposed	to	save	20%	of 	 the	total	meter’s	usage.	Does	 it	
matter that the CV(RMSE) is not below 10%? If  you are looking at 1 
month of  data, it might matter. It may be hard to tell the noise from the 
savings.	But	looking	at	an	entire	year	of 	post-retrofit	data,	I	don’t	think	
it matters at all.
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FRACTIONAL	SAVINGS	UNCERTAINTY

	 But	 let’s	 look	at	uncertainty.	Many	 in	 the	M&V	community	have	
been writing papers about uncertainty lately, all trying to forge some 
measure that can accurately capture the amount of  uncertainty we have 
in	our	Option	C	energy	savings	calculations.*	One	indicator	of 	uncer-
tainty that has been discussed often is the fractional savings uncertainty 
(FSU).
 Let’s examine the concept behind FSU. Suppose you expect to save 
5% of  the total electricity usage of  a building. To determine baseline 
energy usage, you modeled the electricity usage versus cooling degree 
days, and used a linear regression model that had a CV(RMSE) of  
50%. For any given month, you would never be able to tell whether any 
month’s decrease in energy usage was because of  the substantial scatter, 
as	evidenced	by	the	high	CV(RMSE),	or	because	of 	the	retrofit	that	you	
implemented. One of  the points behind FSU is that the smaller the scat-
ter in the data around your model and the larger your savings fraction, 
the	more	certain	you	can	be	that	the	savings	are	a	result	of 	the	retrofit.	
FSU	also	addresses	the	fact	that	the	more	post-retrofit	data	you	have,	the	
less the uncertainty, because there are more points and more savings.
	 The	equation	for	FSU	is:

FSU	=	(Uncertainty	in	the	Baseline	Model)/
	 (Expected	Energy	Savings)	 (Eq	8)

 The greater the expected energy savings, the lower the FSU. The 
higher the uncertainty in the baseline model, the greater the FSU. At 
first	glance,	this	is	entirely	reasonable.	But	it	is	a	little	more	complicated	
than	that.	There	is	an	adjustment	for	the	number	of 	post-retrofit	mea-
surements you are planning on taking.

FSU	=	[(Uncertainty	in	the	Baseline	Model)	*	
	 (Adjustment	for	#	of 	Post	Retrofit	Measurements)]/
	 (Expected	Energy	Savings)	 (Eq	9)

*Never	mind	that	uncertainty	rarely	comes	up	in	performance	contracting	discussions	(negotiations).	
There is no need for calculating uncertainty. So why even go there? If  practitioners do not calculate 
uncertainty	for	Option	A,	B	and	D	M&V,	then	why	would	they	do	it	for	Option	C?	See	Avina	[4].
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	 More	post-retrofit	measurements	drops	 the	FSU	value.	There	will	
be less uncertainty associated with a 10-year M&V job than for a 1-year 
M&V job, that is, assuming that the building energy usage pattern does 
not change in the performance year. There will be less uncertainty with 
daily	data	 than	with	monthly	data	 for	an	equal	 time	period.	This	all	
makes intuitive sense to me.
	 But	how	do	you	put	this	concept	into	a	mathematical	equation?	You	
can	give	the	problem	to	100	statisticians,	and	you	will	get	100	different	
equations	 to	 represent	 this	 concept.	And	each	of 	 the	equations	will	
unfairly	bias	the	FSU	towards	one	or	another	input.	One	equation	may	
put	more	significance	in	the	number	of 	post-retrofit	measurements,	while	
another in the savings fraction. How would we know which is right? As 
it	 stands	now,	 if 	you	use	daily	or	hourly	post-retrofit	data,	 instead	of 	
monthly	or	weekly,	your	FSU	is	significantly	lower.	In	fact,	a	model	with	
a	poor	fit	but	daily	data	scores	a	much	better	FSU	than	a	model	with	a	
good	fit	and	monthly	data.
 Suppose we are looking at a meter both with daily and monthly data. 
Suppose:
•	 Confidence	interval	=	95%

•	 M	=	number	of 	months	of 	post-retrofit	 tracking	 is	5	years	or	60	
months

•	 P	=	2,	representing	there	is	one	independent	variable

•	 CV(RMSE)	=	10%

•	 F	=	25%.	This	is	the	amount	we	expect	to	save.

•	 n	=	n’	is	the	number	of 	pre-retrofit	points	in	the	regression.	For	daily	
it is 365, for monthly, 12.

•	 m	=	number	of 	post-retrofit	points.	For	daily	 it	 is	5	years	or	1824	
points. For monthly it is 60 points.

 Looking at the two models, we can calculate FSU using the Sun and 
Baltazar	model,	shown	in	Table	1.
	 Notice,	that	for	models	with	identical	CV(RMSE),	the	difference	in	
FSU	uncertainty	is	very	large.	This	difference	might	persuade	someone	
to use daily data, rather than monthly data.
 The monthly model gives a 26.5% FSU. What CV(RMSE) in the 
daily model would yield that same 26.5% FSU? See Table 2.
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	 To	get	the	same	FSU	that	the	monthly	model	with	a	CV(RMSE)	=	
10% gives, I would need a daily model with a 63.5% CV(RMSE), which, 
quite	 frankly,	 is	a	horrible	model.	This	 is	what	I	mean	when	I	say	that	
someone	determined	that	number	of 	post-retrofit	points	 is	much	more	
important to FSU than how good the actual regression model is. Another 
statistician	would	have	come	up	with	a	different	equation	entirely,	empha-
sizing	the	duration,	the	number	of 	points	and	the	CV(RMSE)	differently.
 Like the R2 value and the CV(RMSE), the FSU is an arbitrary mea-
sure. In fact, if  we look at the recent history of  this indicator, we can see 
that	it	is	been	through	several	iterations.	In	2002	ASHRAE	Guideline	14	
presented savings uncertainty as:

 	 (Eq	10)*

where
	 t	 =	 students	t-statistic
 CV is the CV(RMSE)
	 n	 =	 number	of 	points	in	the	baseline	period
	 m	 =	 number	of 	points	in	the	post	period
	 p	 =	 number	of 	model	parameters,	i.e.,	if 	there	is	one	independent	vari-

able,	p	=	2
	 n’	 =	 the	effective	number	of 	points	after	accounting	for	autocorrelation,	

which, in this simple analysis, I assume does not happen. So, n’ 
=	n.

	 F	 =	 the	expected	savings	fraction.

	 In	2012,	Sun	and	Baltazar	improved	the	model	by	replacing	the	1.26	
factor	with	a	polynomial	using	M,	the	number	of 	months	of 	post-retrofit	
points:

 	 (Eq	11)

where a, b and c are given as constants.†
*It	is	not	important	to	look	deeply	into	the	equations	for	the	sake	of 	this	argument.	I	only	want	you	
to	recognize	that	they	keep	changing.	If 	you	want	a	good	history,	along	with	a	deep	analysis,	SBW	
Consulting [5] is an excellent reference.

†For	monthly	data:	a	=	-0.00022,	b	=	0.03306,	c	=	0.94054.	For	Daily	Data:	a	=	-0.00024,	b	=	
0.03535,	c	=	1.00286.
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 And recently Josh Rushton, took it further:

 	 (Eq	12)

	 These	changes	in	the	FSU	equation	occurred	over	15	years.	In	100	
years, do we think any of  these models will be remembered? I believe 
not.	They	will	be	replaced	over	and	over	again,	with	many	different	mod-
els, or perhaps, scuttled completely.
	 Let’s	take	a	closer	 look	at	the	ASHRAE	Guideline	14	and	the	Sun	
and	Baltazar	models.	I	used	the	following	static	inputs:

•	 Confidence	interval	=	95%
•	 M	=	number	of 	months	of 	post-retrofit	 tracking	 (used	only	 in	 the	

Sun	and	Baltazar	model),	and	this	typically	would	be	12	months	per	
year,	for	however	many	years	of 	post-retrofit	data.

•	 P	=	2,	representing	there	is	one	independent	variable
•	 CV(RMSE)	=	10%
•	 F	=	25%.	This	is	the	amount	we	expect	to	save.
•	 n	=	n’	is	the	number	of 	pre-retrofit	points	in	the	regression.	For	daily	

it is 365, for monthly, 12.
•	 m	=	number	of 	post-retrofit	points.	For	daily	it	is	365	points	per	year,	

while for monthly, it is 12 points per year.

	 The	ASHRAE	Guideline	14	model	in	Figure	5	shows	a	lowering	of 	
FSU the longer the performance period is.
	 The	Sun	and	Baltazar	model	 shown	 in	Figure	6,	using	 the	 same	
inputs, is problematic. At 14.6 years, 175 months, FSU becomes nega-
tive,	and	this	 is	because	the	squared	value	in	the	first	polynomial	term	
grows	dramatically	as	 the	number	of 	months	of 	post-retrofit	data,	M,	
increases.*	Because	it’s	coefficient,	a,	is	a	negative	number,	you	get	nega-
tive FSU, which doesn’t make any sense.
 So, there it is, the improvement, perhaps is not an improvement after 
175	months	of 	post-retrofit	data.	According	to	this	equation,	it	doesn’t	
matter	what	the	CV(RMSE),	F	or	the	confidence	level	is.	After	14	years	

*At	175	months	using	the	monthly	coefficients:	(175)2	=	30,625.	Multiply	that	result	by	the	negative	
constant	-0.00022,	and	get	-6.7375,	which	is	greater	than	the	other	two	terms	combined,	b	x	M	=	
0.03306	x	175	=	5.7855,	and	c	=	0.94954.
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Figure 5. ASHRAE Guideline 14 Model Results

Figure 6. Sun and Baltazar Model Results
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of  data, FSU approaches 0. All projects and their models are acceptable. 
I don’t know how to interpret negative FSU though. Perhaps it implies 
that there is no uncertainty, but instead supercertainty.
 Josh Rushton’s version, I am ashamed to say, involved such complex 
matrix algebra, that I avoided it entirely. It may be wonderful, but I 
couldn’t tell you. For more information about the Rushton model, see 
SBW	Consulting	[5].
	 In	sum,	the	equations	the	industry	uses	to	represent	FSU	today	or	at	
any future point will continue to be arbitrary, that is a product of  some-
one’s	imagination.*	Therefore,	coming	up	with	some	standard	equation	
and	some	maximum	acceptable	FSU	value	to	define	all	successful	proj-
ects	 is	also	arbitrary,	not	based	 in	reality,	and	really	 just	a	figment	of 	
someone’s	 imagination,	 that	we	have	all	accepted	as	 truth.	Or	as	Ger-
trude Stein once wrote: “There is no ‘there’ there.”

THE	MODELS	ARE	ABSTRACTIONS	AND	UNSCIENTIFIC

 Engineers are not statisticians. We have enough complexity in our 
own profession that we usually prefer to leave statistics to the statisticians. 
Many of  us engineers, otherwise very intelligent people, take for granted 
things that may not be true. We take as a postulate that R2/CV(RMSE)/
FSU is the best method to gauge the applicability of  linear regression 
models, when unfortunately, these methods may not actually be the best.
 None of  these models (R2, CV(RMSE) or FSU) can be compared to 
reality. That is the problem. They are models of  a concept, not models 
of  reality, and as a result, they cannot be proven to be true or accurate.† 
What	can	we	measure	to	prove	the	regression	model	is	adequate?	Noth-
ing. The R2 and	CV(RMSE)	values	are	flawed	and	only	work	sometimes.	
The entire concept of  using these indicators to prove the soundness of  a 
regression	model	is	unscientific.	They	are	agreed	upon	figments	of 	our	
collective imagination composed for us by authorities such as ASHRAE 

*Much	 like	 the	difference	between	science,	which	 is	 supposed	 to	be	based	on	observations,	and	
metaphysics, which is created by the mind.

†A funny response by a well-respected statistician-engineer: “Sure they can. Well, it depends upon 
your	definition	of 	“prove”	but	I	personally	am	extremely	‘confident’	of 	their	reality.”
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and	EVO.	We	take	their	recommendations	as	gospel.*
 Rather than accept this collective delusion, let’s recognize FSU, 
CV(RMSE) and R2 values for what they really are. They are invented 
unscientific	concepts	that	can	never	be	tested	against	reality.

COMPLEXITY

 If  you accept that, then the next step is to recognize that adding more 
complexity, such as FSU, to the problem is not necessarily an improve-
ment. More complexity just means a more complex arbitrary standard. 
We	still	cannot	compare	the	results	and	prove	scientifically	that	one	sta-
tistical	indicator	is	better	than	another.	Yet	industry	guidelines	have	been	
tending towards more complexity. Complex statistical indicators may 
be understandable to statisticians, but they are leaving more and more 
practitioners behind. If  the new methods are not easily comprehensible, 
then practitioners will continue to ignore the new advice and continue to 
use old “tried and true” guidelines, such as R2 > 0.75 and CV(RMSE) < 
25%,	which	really	are	not	sufficient	as	they	are	now.

A	BETTER	WAY	TO	VALIDATE	LINEAR	REGRESSIONS

	 ASHRAE	Guideline	14	recommended	that	 linear	regressions	hav-
ing	CV(RMSE)	values	 less	 than	25%	are	acceptable†‡.	Because	 the	
CV(RMSE) is not always useful, we need a better method to determine 
whether our linear regression models to be used in performance con-

*This	is	akin	to	the	early	Church	fathers	(politicians	in	practice),	who,	in	the	4th	century	Council	
of  Nicaea selected the Christian canon and the gospels that everyone in the Roman Empire had to 
believe in. Over 40 gospels and letters were thrown out, and they edited those that they kept. They 
determined what was the truth, and those who believed otherwise were stigmatized, subject to book 
burnings,	deprived	of 	their	property,	fired	from	their	bishoprics,	exiled,	and	murdered	by	the	state.	
(Don’t	worry,	I	would	never	claim	that	ASHRAE	or	EVO	would	ever	go	to	such	extremes.)

†Actually,	ASHRAE	Guideline	14-2014	says	“the	baseline	model	shall	have	a	maximum	CV(RMSE)	
of 	20%	for	energy	use	and	30%	for	demand	quantities	when	less	than	12	months’	worth	of 	post-ret-
rofit	data	are	available	for	computing	savings.	These	requirements	are	25%	and	35%,	respectively,	
when 12 to 60 months of  data will be used in computing savings. When more than 60 months of  
data	will	be	available,	these	requirements	are	30%	and	40%,	respectively.”

‡ASHRAE	Guideline	14	also	requires	that	the	savings	uncertainty	(FSU)	be	less	than	50%	of 	the	
annual	savings	at	68%	confidence.
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tracting are acceptable or not.
	 I	have	already	pointed	out	the	deficiencies	of 	the	R2 and CV(RMSE) 
in certain conditions. Still, we need some way to identify a good from a 
bad regression. I am suggesting the following rules for validating the best 
fit	of 	a	linear	regression	line:

If  the R2 > 0.75 or the CV(RMSE) < 25%, the regression is valid.

	 If 	you	don’t	immediately	see	how	this	is	different,	let	me	explain.

•	 If 	previously	you	only	accepted	fits	with	R2 values above 0.75, now, 
you can accept with lower R2 values.	Often	these	are	 the	fits	with	
more horizontal slopes.

•	 If 	previously	you	only	accepted	regressions	with	CV(RMSE)s	below	
25%,	now	you	can	accept	fits	above	25%	as	well.	These	might	be	the	
fits	with	low	average	values,	such	as	natural	gas	meters	which	have	
near zero usage during summer months.

	 Some	of 	 these	models	may	not	comply	with	ASHRAE	Guideline	
14’s	requirement	of 	CV(RMSE)	<	25%,	but	that	is	the	point	here.	We	
are looking for a better way to validate regressions.
	 This	is	only	a	step,	but	a	first	step	to	making	more	sense	of 	validating	
regressions.	But	we	are	left	with	a	question:	why	use	thresholds	of 	0.75,	
and 25%? Wouldn’t 0.7 work as well? Probably. Wouldn’t 30% work as 
well?	Maybe.	But	this	is	a	topic	for	another	article.

CONCLUSION

 It took me more than a decade to realize that being smart does not 
mean having memorized whatever guidelines and standards are out 
there. Most people content themselves with this level of  mastery. We 
must remember normal people write these documents. There are few 
Einstein’s out there. Most of  them are just like us. It is important to 
understand and really think about the concepts in these documents.
	 I	hope	that	I	have	convinced	you	of 	the	arbitrary,	unscientific	nature	
of  the statistical indicators we have been using to validate regressions 
used in M&V. More complex formulations, such as FSU, will not neces-
sarily remedy the problem. As the statistical indicators and thresholds, 



VoluMe 4, nuMber 1  57

we have been using are of  little use in some circumstances, we should 
recognize that we should not be bound by prior published recommenda-
tions and can seek a better way to validate regressions.
 The industry needs rules that are easily understandable and that will 
work	in	more	cases	than	existing	ASHRAE	Guideline	14	or	EVO	recom-
mendations. I have presented a set of  rules that I believe are understand-
able and easily implementable for M&V practitioners.
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