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Addressing the Inherent Flaws of

Statistical Methods Used in
Measurement and Verification

John Avina, CEM, CEA, CMVP, CxA

ABSTRACT

	 When we use regressions for Option C M&V, we use statistical indi-
cators, such as R2 and CV(RMSE) to determine whether the regression 
is valid and whether the regression should be used to determine energy 
and demand savings. Although introduced decades ago, fractional sav-
ings uncertainty (FSU), a more complex statistical indicator, is finally 
becoming known among M&V practitioners. All of  these statistical 
indicators used to qualify Option C regressions are human creations and 
are not based in reality. This article explains how these indicators are 
inconsistent, unscientific, arbitrary, and often not well-suited for Option 
C M&V. The industry needs rules that are simple and that will work for 
all regressions. In this article, I have presented a set of  rules that I believe 
are understandable to practitioners and will avoid the drawbacks of  the 
current statistical indicator thresholds as recommended by ASHRAE 
and EVO.

STATISTICS AND REALITY

	 Coming from an energy engineering point of  view, I find statistics to 
be difficult. The math is not too difficult and in a rudimentary sense, the 
concepts are not difficult to understand. But the more advanced concepts 
are confounding to an engineer whose way of  thinking is based on what 
is observable in the material world.
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	 Both statistics and engineering use the language of  math to describe 
reality. But the big difference between statistics and engineering is that 
engineers use mathematics to describe physical phenomena that can be 
observed and measured. We can compare our calculated results to these 
real phenomena, whereas statisticians use mathematics to describe con-
cepts. For many of  these concepts, there is no reality out there with which 
to compare our statistical calculations. In engineering, we do believe we 
are correct in our mathematic equations and calculations when they 
match physical reality. In statistics, there is often no such physical reality 
to compare to, only a conceptual reality.
	 Oh, we can weigh 100 apples and find an average weight, a high 
weight, a low weight, even a standard deviation. These statistical con-
cepts are based in reality. But as we go further and further afield, statistics 
gets more and more conceptual and further and further from the real 
world.

Definitions of  Terms Used
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	 Find me a Newtonian physics equation and through experimenta-
tion engineers can tell you whether the equation accurately represents 
whatever entity it is supposed to represent. But in statistics, we are stuck 
with these conceptual constructs that exist only in our minds. For exam-
ple, CV(RMSE) and R2 are two statistical indicators that can be used 
to gauge the goodness of  a linear regression to a set of  points. Figure 1 
presents such a fit, and the CV(RMSE) and R2 are calculated.

R2 VALUE AND CV(RMSE)

	 The R2 value—also known as the coefficient of  determination—
indicates the proportion of  the variance in the dependent variable that 
is a function of  the independent variable. A good regression model will 
have a high R2 value. The CV(RMSE) is defined as a measure of  all oth-
er variation in the dependent variable. Often, the CV(RMSE) is called 
a measure of  randomness or scatter. A good regression model will have 
little scatter, and thus a small CV(RMSE). You may think then, because 
the R2 is expressed on a 0 to 1 scale, that the CV(RMSE) would also 
be on a 0 to 1 scale, and that the two values would add to 1. That is, 
if  the R2 is 0.81, then 81% of  the variation of  the dependent variable 
can be ascribed to variations in the independent variable. It should fol-
low, that all other variation, or scatter, should be 19%, or 0.19, but the 
CV(RMSE) value is not 19% or 0.19, and could be any number between 
0 to infinity. The CV(RMSE) isn’t even measured on the same scale as 
R2! Why is that?
	 So why don’t the two measures add up to one when their lay verbal 
definitions imply they should? If  we define CV(RMSE) as an indicator of  
all the variation in the dependent variable that is not related to the inde-
pendent variable, then it seems that the two measures should be related 
mathematically to each other.
	 Most likely, the answer is that in trying to simplify these statistical 
concepts, statisticians have generalized them so that they can be vaguely 
understandable to the layperson (like myself). However, the generaliza-
tion has leached out the accuracy of  the explanations. If  the generaliza-
tions were accurate, then the R2 value and the CV(RMSE) would togeth-
er sum to unity. And not only that, as the R2 value drops, the CV(RMSE) 
should increase. But that doesn’t always happen, as you will see below.
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	 Let’s take a closer look at the R2 value. Linear regressions that 
have steep fits have higher R2 values than linear regressions with flatter 
slopes—even if  the scatter is exactly the same. Figure 2 shows linear fit 
regressions for two sets of  12-month bill data: each data set has the same 
mean value, and the same CV(RMSE). The only difference between the 
data sets is that the orange data set has a steeper linear fit slope, and con-
sequently has a higher R2 value.

Figure 2. Linear Fit Regressions for Two Sets of  Billing Data

	 The difference in R2 values in the example is the natural result of  
the definition of  R2, which, as I said before, represents the proportion 
of  the variance in the dependent variable that is a function of  the inde-
pendent variable. If  the slope is flat, then the dependent variable is not 
varying by that much due to changes in the independent variable. And 
if  there is the same random scatter in both data sets, then the propor-
tion of  the variance due to the independent variable in the flat slope is 
less, and the proportion due to the randomness is more. This definition 
of  R2 works.
	 So then, perhaps we shouldn’t call the R2 value an indicator of  the 
“goodness of  fit,” because “goodness of  fit” has nothing to do with 
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slope. In addition, because both linear fits in Figure 2 have the same 
random scatter, they should be considered equally valid models to pre-
dict energy usage. So, the R2 value really has little to do with how well 
the model predicts the actual values either.
	 In addition, we should not be using the R2 value to determine 
whether a fit is acceptable or not. It is not a fair measure, as areas with 
little variation in weather have a small likelihood of  passing the R2 
criteria. Honolulu and San Francisco are two places that come to mind 
where a low R2 value may not indicate a poor model. The point is that 
the R2 value is an imperfect construct created by a pair of  academics 
in the 1920s that is not based on a law of  nature or mathematics. For 
decades, energy efficiency professionals have been taught the R2 value 
as an indicator of  “goodness of  fit” as if  it were a law of  nature not 
to be questioned. It is not.* Agami Reddy and David Claridge made 
this clear in 2000[2], and the ASHRAE Guideline 14 committee took 
this information to heart when they did not include the R2 value in the 
ASHRAE Guideline 14 in 2002 and again in 2014[3].
	 On the other hand, we shouldn’t be using the CV(RMSE) to deter-
mine whether a fit is acceptable or not either. Whereas the R2 value 
is comparing points to the slope of  the fit, the CV(RMSE) compares 
points to the average bill. In Figure 3, we have two sets of  points; the 
only difference is that the intercept (3085.5) associated with the data set 
of  orange dots is 500% higher than the intercept (617.09) of  the data 
set signified by the blue squares.
	 The CV(RMSE) for the lower line (signified by squares) is 21%, 
while it is 5% for the higher line. You can see that the distance from 
the points to the fit line is the same. The R2 is the same for both. The 
CV(RMSE) increases when the average bill drops.
	 So then, R2 value is low for fits with low slopes, and the CV(RMSE) 
is high when the average bill is lower. Neither indicator determines the 
quality of  the fit for all conditions. Really, neither indicator should be 
used to determine whether a fit is acceptable.

*I admit, I was one of  those teachers, who, in trying to simplify the concept of  R2 called it “goodness
of  fit.”
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A CLOSER LOOK AT THE DIFFERENCE BETWEEN
THE R2 AND CV(RMSE) EQUATIONS

	 Let’s take a closer look at the data in Figure 2. The data are from 12 
months of  consecutive utility bills. Each data point represents a month’s 
therms/day as a function of  the heating degree days (HDD)/day.*
	 This difference in R2 values in the two plots in the graph is due to 
the denominator of  the R2 term (see Equation 1), which represents how 
far the individual points are from the average point. If  the points are 
clumped together to form a flat slope, then the points are close to the 
average point, and the denominator would be lower, the fraction is there-
fore higher, and finally, the R2 value is lower.

(Eq 1)

Figure 3. Comparison of  Two Trend Lines with the Same R2

*If  we merely plotted therms vs. HDD, a 25-day bill would carry just as much weight as a 35-day
bill. We divide by number of  days to remove this bias.
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where:
yi represents the actual bill
ŷi represents what the fit line estimates the bill to be
yi represents the average bill in the base year
and can translated into lay terms as:

	 	 (Eq 2)

Or written another way even simpler:

	 R2 = 1 – Scatter %	 (Eq 3)

	 What is interesting (to the non-statistician like myself) is that the R2 
value is defined in the equation as everything except the scatter.
	 Let’s take a look at the “Scatter %” term.
	 The numerator in Equation 2, ∑(difference from each bill to fit line)2, 
is the “scatter” in absolute terms (in other words, it is not a percentage, 
but the number of  kWh2, therms2, or the square of  whatever unit we are 
dealing with). If  the model were perfect, each month’s bill would lie on 
the fit line, the numerator would be 0 (i.e., the “scatter” term would be 
0), and the R2 value would be 1.
	 The denominator makes the scatter in the numerator into a per-
centage of  the total scatter, so that the R2 value, which is 1 minus this 
percentage, will always be between 0 and 1. But why do they use the dif-
ference between each monthly bill and the yearly average in the denomi-
nator? Couldn’t they have used the difference between each monthly bill 
and the model’s prediction of  that monthly bill? I know there is a reason 
behind the definition. I am just not aware of  it.
	 Remember, CV(RMSE) is also defined as scatter. The definition of  
CV(RMSE) is:

	 	 (Eq 4)

where
	 n is number of  bills
	 p is number of  independent variables + 1
	 yi represents the actual bill
	 ŷi represents what the fit line estimates the month’s bill to be
	 yi represents the average bill in the base year
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Equation 4 can be rearranged:

	 	 (Eq 5)

and translated into lay terms as:

	
	(Eq 6)

	 In the format of  equations 5 and 6, the CV(RMSE) looks similar 
to the R2 value equation. Let’s compare the two equations: Equation 6 
above, and equation 2 repeated below:

	 	 (Eq 2)

	 The numerators for R2 and CV(RMSE) are nearly the same. In 
fact, they only differ by the square root of  the summation term. It is the 
denominators that are different. The CV(RMSE) uses the average bill in 
the denominator, whereas the denominator of  the R2 value is based on 
the difference from each bill to the average bill. (You have to divide by 
something to get a percentage, and the designers of  these two indicators 
unfortunately used different denominators.)
	 Essentially, we are using scatter in two ways. The R2 value is the 
anti-scatter, R2 = 1- Scatter, while the CV(RMSE) = Scatter.
	 And to confound it all, the problem is that the definitions of  scatter 
are different. These different definitions of  scatter explain why the R2 val-
ue, and the CV(RMSE) do not add up to one. So why is the CV(RMSE) 
using the average bill, and the R2 using the difference from each bill to 
the average bill? Is there a good reason for this difference? I doubt it. My 
guess is that the CV(RMSE) had a different independent evolution from 
the R2 value. The CV(RMSE) evolved from the coefficient of  variation, 
the CV, an old concept. As the CV was then extended from applying to 
a single number to a regression over a series of  numbers, it became the 
CV(RMSE).
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AN EXAMPLE GREAT FIT WITH A LOW R2 VALUE

	 The meter data in Figure 4 are from a department store in Daly City, 
California. For those who have not visited Daly City, I can tell you it is 
nearly always foggy there, and the weather is uniformly dreary, every 
month of  the year. The model for kWh vs. CDD shows a very flat fit, 
with a consequent low R2 value of  0.06. But the CV(RMSE) is fantastic, 
at 3%. In spite of  the poor R2 value, this is a fantastic fit. So, what should 
we do? Is this an acceptable regression?
	 Old school ESCO thinking would be to throw the model out—don’t 
use it. The IPMVP states that fits should have R2 values above 0.75, and 
this model is clearly lower. Most ESCOs follow the IPMVP. ASHRAE 
Guideline 14 does not mention R2 value and instead requires that fits 
have low CV(RMSE)s. According to the IPMVP recommendation of  
0.75, then, this is an unacceptable fit. According to ASHRAE Guideline 
14, it is stellar. So, what should we do with this model? The regression 
model appears very accurate at predicting the bills. Why not use it?

PERHAPS A SOLUTION TO THE CV(RMSE)
AND R2 INCONSISTENCY

	 Perhaps a solution to this jumble of  the inconsistency of  R2 and 
CV(RMSE) would be to at least make them consistent. Why not have the 
CV(RMSE), or my proposed replacement of  it, be associated with the R2 
value. The R2 value compares deviation to the slope. Why not have the 
replacement for the CV(RMSE) also compare deviation to the slope. An 
easy equation would be:

	 Proposed Measure of  Scatter = 1 – R2	 (Eq 7)

	 This way, if  an R2 value was 0.8, we are saying that 80% of  the 
deviation of  the dependent variable is associated with the independent 
variable. And therefore, the Scatter = 1 – 0.8 = 0.2, which means that 
20% of  the fluctuation of  the independent variable we cannot account 
for. Doesn’t that seem more elegant?
	 The problem with this simplification, as I mentioned already, is that 
R2 values are low for flatter slopes and high for steeper slopes. Although 
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this follows the definition of  R2, as “to what degree do changes in the 
independent variable correspond to changes in the dependent variable,” 
my definition of  scatter still holds. For flat slopes, we cannot account for 
most of  the variation; therefore, for the Daly City meter above, the 0.06 
R2 value, would yield a scatter of  94%. Just like we cannot use R2, or 
CV(RMSE) to determine whether a fit is acceptable to use in a model, 
we would not be able to use my proposed scatter term either. It is a good 
fit, and my scatter is 94%, which appears, on the surface, way too high.
	 But at least R2 and Scatter terms would be consistent. We would be 
able to say: “6% of  the variation in kWh/day is associated with changes 
in CDD/day and 94% of  the variation in kWh/day, well, we don’t know 
where that comes from.” Isn’t that more elegant than saying, the fit has 
an R2 value of  0.06 and a CV(RMSE) of  3.04%?

CV(RMSE) AND SAVINGS FRACTION

	 The IPMVP Core Concepts module states that the savings fraction 
should be more than two times the CV(RMSE). The savings fraction, F, 
is the percentage of  energy you expect to save from the total bill. In other 
words, if  you expect to save 40% of  energy usage, then the CV(RMSE) 
should be less than 20%. Two questions come to mind. Why two times 
and not three times, or one and half  times? Where did that come from?
	 The second question is, why does this matter in the first place? If  
you want to see savings over a month or a few months, sure, this makes 
sense. You want the savings to be larger than the CV(RMSE). Then 
you can be somewhat certain that the difference in usage is due to your 
retrofits and not due to the noise the CV(RMSE) is indicating. But over 
the course of  a year, it all evens out. Because the model has a net mean 
bias error of  0, for an entire year of  data the model is not biased to 
show more or less savings than there really is. For example, suppose you 
have a model with a good fit. The CV(RMSE) is 18%, and your energy 
projects are supposed to save 20% of  the total meter’s usage. Does it 
matter that the CV(RMSE) is not below 10%? If  you are looking at 1 
month of  data, it might matter. It may be hard to tell the noise from the 
savings. But looking at an entire year of  post-retrofit data, I don’t think 
it matters at all.
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FRACTIONAL SAVINGS UNCERTAINTY

	 But let’s look at uncertainty. Many in the M&V community have 
been writing papers about uncertainty lately, all trying to forge some 
measure that can accurately capture the amount of  uncertainty we have 
in our Option C energy savings calculations.* One indicator of  uncer-
tainty that has been discussed often is the fractional savings uncertainty 
(FSU).
	 Let’s examine the concept behind FSU. Suppose you expect to save 
5% of  the total electricity usage of  a building. To determine baseline 
energy usage, you modeled the electricity usage versus cooling degree 
days, and used a linear regression model that had a CV(RMSE) of  
50%. For any given month, you would never be able to tell whether any 
month’s decrease in energy usage was because of  the substantial scatter, 
as evidenced by the high CV(RMSE), or because of  the retrofit that you 
implemented. One of  the points behind FSU is that the smaller the scat-
ter in the data around your model and the larger your savings fraction, 
the more certain you can be that the savings are a result of  the retrofit. 
FSU also addresses the fact that the more post-retrofit data you have, the 
less the uncertainty, because there are more points and more savings.
	 The equation for FSU is:

FSU = (Uncertainty in the Baseline Model)/
	 (Expected Energy Savings)	 (Eq 8)

	 The greater the expected energy savings, the lower the FSU. The 
higher the uncertainty in the baseline model, the greater the FSU. At 
first glance, this is entirely reasonable. But it is a little more complicated 
than that. There is an adjustment for the number of  post-retrofit mea-
surements you are planning on taking.

FSU = [(Uncertainty in the Baseline Model) * 
	 (Adjustment for # of  Post Retrofit Measurements)]/
	 (Expected Energy Savings)	 (Eq 9)

*Never mind that uncertainty rarely comes up in performance contracting discussions (negotiations). 
There is no need for calculating uncertainty. So why even go there? If  practitioners do not calculate 
uncertainty for Option A, B and D M&V, then why would they do it for Option C? See Avina [4].
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	 More post-retrofit measurements drops the FSU value. There will 
be less uncertainty associated with a 10-year M&V job than for a 1-year 
M&V job, that is, assuming that the building energy usage pattern does 
not change in the performance year. There will be less uncertainty with 
daily data than with monthly data for an equal time period. This all 
makes intuitive sense to me.
	 But how do you put this concept into a mathematical equation? You 
can give the problem to 100 statisticians, and you will get 100 different 
equations to represent this concept. And each of  the equations will 
unfairly bias the FSU towards one or another input. One equation may 
put more significance in the number of  post-retrofit measurements, while 
another in the savings fraction. How would we know which is right? As 
it stands now, if  you use daily or hourly post-retrofit data, instead of  
monthly or weekly, your FSU is significantly lower. In fact, a model with 
a poor fit but daily data scores a much better FSU than a model with a 
good fit and monthly data.
	 Suppose we are looking at a meter both with daily and monthly data. 
Suppose:
•	 Confidence interval = 95%

•	 M = number of  months of  post-retrofit tracking is 5 years or 60 
months

•	 P = 2, representing there is one independent variable

•	 CV(RMSE) = 10%

•	 F = 25%. This is the amount we expect to save.

•	 n = n’ is the number of  pre-retrofit points in the regression. For daily 
it is 365, for monthly, 12.

•	 m = number of  post-retrofit points. For daily it is 5 years or 1824 
points. For monthly it is 60 points.

	 Looking at the two models, we can calculate FSU using the Sun and 
Baltazar model, shown in Table 1.
	 Notice, that for models with identical CV(RMSE), the difference in 
FSU uncertainty is very large. This difference might persuade someone 
to use daily data, rather than monthly data.
	 The monthly model gives a 26.5% FSU. What CV(RMSE) in the 
daily model would yield that same 26.5% FSU? See Table 2.
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	 To get the same FSU that the monthly model with a CV(RMSE) = 
10% gives, I would need a daily model with a 63.5% CV(RMSE), which, 
quite frankly, is a horrible model. This is what I mean when I say that 
someone determined that number of  post-retrofit points is much more 
important to FSU than how good the actual regression model is. Another 
statistician would have come up with a different equation entirely, empha-
sizing the duration, the number of  points and the CV(RMSE) differently.
	 Like the R2 value and the CV(RMSE), the FSU is an arbitrary mea-
sure. In fact, if  we look at the recent history of  this indicator, we can see 
that it is been through several iterations. In 2002 ASHRAE Guideline 14 
presented savings uncertainty as:

	 	 (Eq 10)*

where
	 t	 =	 students t-statistic
	CV	 is	 the CV(RMSE)
	 n	 =	 number of  points in the baseline period
	 m	 =	 number of  points in the post period
	 p	 =	 number of  model parameters, i.e., if  there is one independent vari-

able, p = 2
	 n’	 =	 the effective number of  points after accounting for autocorrelation, 

which, in this simple analysis, I assume does not happen. So, n’ 
= n.

	 F	 =	 the expected savings fraction.

	 In 2012, Sun and Baltazar improved the model by replacing the 1.26 
factor with a polynomial using M, the number of  months of  post-retrofit 
points:

	 	 (Eq 11)

where a, b and c are given as constants.†
*It is not important to look deeply into the equations for the sake of  this argument. I only want you 
to recognize that they keep changing. If  you want a good history, along with a deep analysis, SBW 
Consulting [5] is an excellent reference.

†For monthly data: a = -0.00022, b = 0.03306, c = 0.94054. For Daily Data: a = -0.00024, b = 
0.03535, c = 1.00286.
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	 And recently Josh Rushton, took it further:

	 	 (Eq 12)

	 These changes in the FSU equation occurred over 15 years. In 100 
years, do we think any of  these models will be remembered? I believe 
not. They will be replaced over and over again, with many different mod-
els, or perhaps, scuttled completely.
	 Let’s take a closer look at the ASHRAE Guideline 14 and the Sun 
and Baltazar models. I used the following static inputs:

•	 Confidence interval = 95%
•	 M = number of  months of  post-retrofit tracking (used only in the 

Sun and Baltazar model), and this typically would be 12 months per 
year, for however many years of  post-retrofit data.

•	 P = 2, representing there is one independent variable
•	 CV(RMSE) = 10%
•	 F = 25%. This is the amount we expect to save.
•	 n = n’ is the number of  pre-retrofit points in the regression. For daily 

it is 365, for monthly, 12.
•	 m = number of  post-retrofit points. For daily it is 365 points per year, 

while for monthly, it is 12 points per year.

	 The ASHRAE Guideline 14 model in Figure 5 shows a lowering of  
FSU the longer the performance period is.
	 The Sun and Baltazar model shown in Figure 6, using the same 
inputs, is problematic. At 14.6 years, 175 months, FSU becomes nega-
tive, and this is because the squared value in the first polynomial term 
grows dramatically as the number of  months of  post-retrofit data, M, 
increases.* Because it’s coefficient, a, is a negative number, you get nega-
tive FSU, which doesn’t make any sense.
	 So, there it is, the improvement, perhaps is not an improvement after 
175 months of  post-retrofit data. According to this equation, it doesn’t 
matter what the CV(RMSE), F or the confidence level is. After 14 years 

*At 175 months using the monthly coefficients: (175)2 = 30,625. Multiply that result by the negative 
constant -0.00022, and get -6.7375, which is greater than the other two terms combined, b x M = 
0.03306 x 175 = 5.7855, and c = 0.94954.
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Figure 5. ASHRAE Guideline 14 Model Results

Figure 6. Sun and Baltazar Model Results
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of  data, FSU approaches 0. All projects and their models are acceptable. 
I don’t know how to interpret negative FSU though. Perhaps it implies 
that there is no uncertainty, but instead supercertainty.
	 Josh Rushton’s version, I am ashamed to say, involved such complex 
matrix algebra, that I avoided it entirely. It may be wonderful, but I 
couldn’t tell you. For more information about the Rushton model, see 
SBW Consulting [5].
	 In sum, the equations the industry uses to represent FSU today or at 
any future point will continue to be arbitrary, that is a product of  some-
one’s imagination.* Therefore, coming up with some standard equation 
and some maximum acceptable FSU value to define all successful proj-
ects is also arbitrary, not based in reality, and really just a figment of  
someone’s imagination, that we have all accepted as truth. Or as Ger-
trude Stein once wrote: “There is no ‘there’ there.”

THE MODELS ARE ABSTRACTIONS AND UNSCIENTIFIC

	 Engineers are not statisticians. We have enough complexity in our 
own profession that we usually prefer to leave statistics to the statisticians. 
Many of  us engineers, otherwise very intelligent people, take for granted 
things that may not be true. We take as a postulate that R2/CV(RMSE)/
FSU is the best method to gauge the applicability of  linear regression 
models, when unfortunately, these methods may not actually be the best.
	 None of  these models (R2, CV(RMSE) or FSU) can be compared to 
reality. That is the problem. They are models of  a concept, not models 
of  reality, and as a result, they cannot be proven to be true or accurate.† 
What can we measure to prove the regression model is adequate? Noth-
ing. The R2 and CV(RMSE) values are flawed and only work sometimes. 
The entire concept of  using these indicators to prove the soundness of  a 
regression model is unscientific. They are agreed upon figments of  our 
collective imagination composed for us by authorities such as ASHRAE 

*Much like the difference between science, which is supposed to be based on observations, and 
metaphysics, which is created by the mind.

†A funny response by a well-respected statistician-engineer: “Sure they can. Well, it depends upon 
your definition of  “prove” but I personally am extremely ‘confident’ of  their reality.”
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and EVO. We take their recommendations as gospel.*
	 Rather than accept this collective delusion, let’s recognize FSU, 
CV(RMSE) and R2 values for what they really are. They are invented 
unscientific concepts that can never be tested against reality.

COMPLEXITY

	 If  you accept that, then the next step is to recognize that adding more 
complexity, such as FSU, to the problem is not necessarily an improve-
ment. More complexity just means a more complex arbitrary standard. 
We still cannot compare the results and prove scientifically that one sta-
tistical indicator is better than another. Yet industry guidelines have been 
tending towards more complexity. Complex statistical indicators may 
be understandable to statisticians, but they are leaving more and more 
practitioners behind. If  the new methods are not easily comprehensible, 
then practitioners will continue to ignore the new advice and continue to 
use old “tried and true” guidelines, such as R2 > 0.75 and CV(RMSE) < 
25%, which really are not sufficient as they are now.

A BETTER WAY TO VALIDATE LINEAR REGRESSIONS

	 ASHRAE Guideline 14 recommended that linear regressions hav-
ing CV(RMSE) values less than 25% are acceptable†‡. Because the 
CV(RMSE) is not always useful, we need a better method to determine 
whether our linear regression models to be used in performance con-

*This is akin to the early Church fathers (politicians in practice), who, in the 4th century Council 
of  Nicaea selected the Christian canon and the gospels that everyone in the Roman Empire had to 
believe in. Over 40 gospels and letters were thrown out, and they edited those that they kept. They 
determined what was the truth, and those who believed otherwise were stigmatized, subject to book 
burnings, deprived of  their property, fired from their bishoprics, exiled, and murdered by the state. 
(Don’t worry, I would never claim that ASHRAE or EVO would ever go to such extremes.)

†Actually, ASHRAE Guideline 14-2014 says “the baseline model shall have a maximum CV(RMSE) 
of  20% for energy use and 30% for demand quantities when less than 12 months’ worth of  post-ret-
rofit data are available for computing savings. These requirements are 25% and 35%, respectively, 
when 12 to 60 months of  data will be used in computing savings. When more than 60 months of  
data will be available, these requirements are 30% and 40%, respectively.”

‡ASHRAE Guideline 14 also requires that the savings uncertainty (FSU) be less than 50% of  the 
annual savings at 68% confidence.
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tracting are acceptable or not.
	 I have already pointed out the deficiencies of  the R2 and CV(RMSE) 
in certain conditions. Still, we need some way to identify a good from a 
bad regression. I am suggesting the following rules for validating the best 
fit of  a linear regression line:

If  the R2 > 0.75 or the CV(RMSE) < 25%, the regression is valid.

	 If  you don’t immediately see how this is different, let me explain.

•	 If  previously you only accepted fits with R2 values above 0.75, now, 
you can accept with lower R2 values. Often these are the fits with 
more horizontal slopes.

•	 If  previously you only accepted regressions with CV(RMSE)s below 
25%, now you can accept fits above 25% as well. These might be the 
fits with low average values, such as natural gas meters which have 
near zero usage during summer months.

	 Some of  these models may not comply with ASHRAE Guideline 
14’s requirement of  CV(RMSE) < 25%, but that is the point here. We 
are looking for a better way to validate regressions.
	 This is only a step, but a first step to making more sense of  validating 
regressions. But we are left with a question: why use thresholds of  0.75, 
and 25%? Wouldn’t 0.7 work as well? Probably. Wouldn’t 30% work as 
well? Maybe. But this is a topic for another article.

CONCLUSION

	 It took me more than a decade to realize that being smart does not 
mean having memorized whatever guidelines and standards are out 
there. Most people content themselves with this level of  mastery. We 
must remember normal people write these documents. There are few 
Einstein’s out there. Most of  them are just like us. It is important to 
understand and really think about the concepts in these documents.
	 I hope that I have convinced you of  the arbitrary, unscientific nature 
of  the statistical indicators we have been using to validate regressions 
used in M&V. More complex formulations, such as FSU, will not neces-
sarily remedy the problem. As the statistical indicators and thresholds, 
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we have been using are of  little use in some circumstances, we should 
recognize that we should not be bound by prior published recommenda-
tions and can seek a better way to validate regressions.
	 The industry needs rules that are easily understandable and that will 
work in more cases than existing ASHRAE Guideline 14 or EVO recom-
mendations. I have presented a set of  rules that I believe are understand-
able and easily implementable for M&V practitioners.
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